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Summary: Newfound relatives of the classical Fc receptors (FcR) have
been provisionally named the Fc receptor homologs (FcRH). The recent
identification of eight human and six mouse FcRH genes substantially
increases the size and functional potential of the FcR family. The extended
family of FcR and FcRH genes spans �15Mb of the human chromosome
1q21–23 region, whereas in mice this family is split between chromo-
somes 1 and 3. The FcRH genes encode molecules with variable combi-
nations of five subtypes of immunoglobulin (Ig) domains. The presence
of a conserved sequence motif in one Ig domain subtype implies Ig Fc
binding capability for many FcRH family members that are preferentially
expressed by B lineage cells. In addition, most FcRH family members
have consensus tyrosine-based activating and inhibitory motifs in their
cytoplasmic domains, while the others lack features typical of transmem-
brane receptors. The FcRH family members, like the classical FcRs, come
in multiple isoforms and allelic variations. The unique individual and
polymorphic properties of the FcR/FcRH members indicate a remarkably
diverse Fc receptor gene family with immunoregulatory function.

Introduction

Beginning with the initial identification of cellular immuno-

globulin (Ig)-binding receptors more than 30years ago, the

field of Fc receptor (FcR) biology has evolved to a compre-

hensive understanding of the biological consequences result-

ing from the physical interactions of FcRs with the Fc portion

of Ig (1–4). The early observations that linked antibodies

with the FcgRI, FcgRII, FcgRIII, and FceRI on effector cells led to

the identification of complex regulatory networks that inte-

grate innate immunity with the cell-mediated and humoral

arms of adaptive immune responses (5–8). Characterization

of the classical FcRs, encoded by genes in the human chromo-

some 1q21–23 region, includes the elucidation of genomic

and amino acid sequences of multiple FcR isoforms, specific

cellular expression patterns, signaling potential, polymorphic

functional properties, and protein structures (9–14). Struc-
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tural analysis has yielded insight into the physiochemical in-

teractions required for Fc binding and the essential Ig binding

domains that have been maintained throughout vertebrate

evolution (15–20). Genetically engineered mice deficient in

FcR genes have demonstrated the involvement of these recep-

tors in autoimmune diseases and verified their key roles in

hypersensitivity reactions (13, 21–28). While some facets of

FcR function are still unresolved, it is abundantly clear that

the classical FcRs play an important role in maintaining the

intricate coordination and balance between cellular and hu-

moral immunity in higher vertebrates.

Robust efforts to sequence the genomes of model organ-

isms and the complementary analysis of expressed sequence

tags (ESTs) derived from specialized tissues have led to the

recent identification of many previously unrecognized genes.

This information has enabled a detailed genetic analysis of the

phylogenetic relatedness of large gene families. Comparative

analysis of homologous genes (either orthologs or paralogs)

in different organisms has shed light on their genomic re-

latedness and diversity and provided theoretical connections

between syntenic regions and immune function. Complex

loci conserved for �500million years of vertebrate evolution,

including the major histocompatibility complex (MHC) and

the rearranging B-cell and T-cell receptor gene families, are

related not only by similar sequence and structure but also

by shared functional relationships. Their co-evolution with

other multigene families accounts for the remarkably inte-

grated features of adaptive immunity. Such higher order re-

lationships involving many different gene families are proving

to be more common than anticipated. This is particularly true

for members of the Ig-gene superfamily that encode the most

common domain type in the human proteome (29, 30).

A large Ig-like gene family of FcaR relatives has been char-

acterized in a human chromosome 19q13.4 region known as

the leukocyte receptor cluster (LRC) of genes (31–36). This

polymorphic gene family of �26 members encodes trans-

membrane immunoreceptors with tyrosine-based activating

and inhibitory signaling properties (37, 38). These include

the FcaR (CD89) (39), Ig-like transcripts/leukocyte Ig-like

receptors (ILT/LIR/MIR-CD85) (33, 40–42), natural killer

Ig-like receptors (KIR/CD158) (43–46), leukocyte associ-

ated-inhibitory receptors (LAIR) (47), and NKp46 (48). The

closest mouse relatives of the LRC encoded receptors are the

paired Ig-like receptors (PIR) that reside in a mouse chromo-

some 7 region syntenic with the human chromosome

19q13.4 region (49). Interestingly, NKp46 is the only LRC

member that has maintained orthologous properties in

humans and mice (50). While the ILT/LIR genes are likely to
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be the closest homologs of the murine PIRs (37, 51, 52),

the KIRs, which have been identified in humans and other

mammals but not in mice, are thought to represent a recent

independent expansion of the primate LRC (38, 53, 54).

The ligands for the immunoreceptors encoded by LRC

genes are typically other members of the Ig superfamily. Many

LRC Ig-like receptors, including the KIRs and LIRs, have MHC

class I and class I-like ligands (17, 41, 45, 55–61). Allelic

variants of the KIR and LIR genes and haplotypic differences

in the numbers of these genes are manifested by differences

in the receptor repertoire between individuals and even be-

tween different subsets of cells within individuals (35, 62).

While the functional consequences of the polymorphic extra-

cellular regions of these receptors are not yet fully under-

stood, their intracellular signaling capacity is conserved

among family members; their possession of common activat-

ing or inhibitory cytoplasmic signaling motifs relates the LRC

receptors to a larger group of paired Ig-like receptors that

regulate the activation status of the cells that bear them (63,

64). The signaling properties that distinguish inhibitory iso-

forms reside in their cytoplasmic tails and bestow the ability

to initiate cellular inhibition via immunoreceptor tyrosine-

based inhibitory motifs (ITIM) (65–67). Activating isoforms

may have long cytoplasmic tails with immunoreceptor tyro-

sine-based activation motifs (ITAM) or, more commonly, as-

sociate with ITAM-bearing adapter proteins via non-covalent

interaction of charged amino acids in their respective trans-

membrane regions (68–73). The associated adapter proteins

include DAP12 and DAP10/KAP10 (74–78), which are en-

coded by genes in the region surrounding the LRC on

chromosome 19, and the Fc receptor common g chain

(FcRgc) and CD3z chains, the genes for which are located in

the region surrounding the Fc receptor genes on chromo-

some 1 (79–84). Notable similarities between these two clus-

ters of Ig-like receptor genes include genomic structure,

amino acid content, Ig domain ligands, and tyrosine-based

signaling, features that collectively suggest a shared phylogen-

etic background.

Identification of Fc receptor homologs

The large number of FcaR relatives in the LRC gene family

suggested to us that an extended family of the classical Fc

receptors might exist within the chromosome 1q21–23 re-

gion. Utilizing available sequence information, we identified

an amino acid (aa) consensus sequence derived from the sec-

ond domains of human FcgRI (CD64), FcgRII (CD32),

FcgRIII (CD16), and the third domain of polymeric Ig recep-
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tor. When this 32 aa motif was used in a Genbank database

query, genomic clones from the 1q21–22 region were iden-

tified that contained five Ig superfamily members, which we

have provisionally termed the Fc receptor homolog family

(huFcRH1-5) (85, 86). Identification of ESTs in the Lymphoch-

ip database (87) inferred B-cell expression for many of these

genes, an implication that is supported by RNA blot and re-

verse-transcriptase polymerase chain reaction (RT-PCR) analy-

ses (85). The FcRH1-5 genes were independently identified as

immunoglobulin superfamily receptor translocation associ-

ated genes (IRTA) through an analysis of the breakpoints of a

t(1;14)(q21;q32) chromosomal translocation from a

multiple myeloma cell line (88, 89). Others have identified

members of this family as IFGP (IgSF, FcR, gp42) (90) and

SPAP (SH2 domain-containing phosphatase anchor protein)

genes (91). Further analysis with the FcR consensus motif

and amino acid sequences, which include huFcRH1-5 specific

Ig-like domains and the third Ig domain (D3) of huFcgRI,

led to the identification of an Fc receptor related gene,

huFcRX/FcRL/FREB, and its mouse ortholog, moFcRX (92–94).

A similar database analysis has since identified additional

novel FcRH family members in both humans and mice (see

Fig. 1). The recognition of this extensive family of Fc receptor

relatives reveals a previously unanticipated diversity for the Fc

receptor family.

Genomic diversity of the Fc receptor cluster

In parallel with the LRC family members, the classical Fc recep-

tors and the FcRHs are related by chromosomal proximity and

genomic structure. The specific organization of these genes is

provisional, but data from the public and private databases sug-

gests the Fc Receptor Cluster (FRC) spans over 15Mb in the hu-

man chromosome 1q21–23 region (Fig. 1). The FRC genes are

flanked by the high affinity FcgRIa on the centromeric end and

the ITAM bearing signaling chain CD3z on the telomeric end.

The telomeric end of the cluster was initially characterized by

linkage studies that mapped the location of the low affinity

FcgRII/III genes to the 1q22–23 region, and studies identified

their mouse orthologs in a syntenic region on mouse chromo-

some 1 (95–98). A more recent analysis of human genomic

bacterial artificial chromosome (BAC) clones that overlap this

region has clarified the specific gene locations within the low

affinity locus (99). The newly defined human Fc receptor re-

lated genes, FcRX/FcRL/FREB and FcRY, are closely linked with

the low affinity FcR genes and map within 40kb of FcgRIIB. The

other classical FcR genes, FceRIa, and FcgRIa, and FcRgc, the gene

for the FcR common gamma chain, reside centromeric of the
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low affinity FcgRII/III genes. Between them lies another recently

identified gene, FcRH6, which is positioned near a highly re-

lated pseudogene (y) that shares similar features (our unpub-

lished data). The FcRH1-5 locus is approximately 2Mb centrom-

eric of FceRIa, spans more than 300kb, and is flanked at its tel-

omeric end by a member of the cysteine rich scavenger

receptor family, the 5pa gene. The specific position of FcgRI has

recently been called into question because of differing place-

ment by genome mapping projects. According to the latest ap-

proximation by the National Center for Biotechnology Infor-

mation (NCBI) we have provisionally placed it in a location that

correlates with its original positioning (100, 101).

Homology-based mapping of the human and mouse ge-

nomes identifies syntenic regions of human chromosome

1q21–23 that are split between mouse chromosomes 1 and 3.

Although the exact boundary between these regions remains

unclear, it appears to be centered near the CD1 locus. CD1A-E

link within 800kb centromeric of FceRIa, which is located on

mouse chromosome 1, and within 300kb telomeric of 5pa,

which resides on mouse chromosome 3 (102). Previous

work indicates that CD1 defines a conserved linkage group

border between human chromosome 1 and mouse chromo-

somes 1 and 3 (103, 104). The FRC region has been postu-

lated to be among a group of paralogous MHC gene contain-

ing regions on chromosomes 1, 6, 9, and 19 that likely

emerged through large-scale block duplications (105–107).

The location of the genes for the CD1 MHC class I-like mol-

ecules, which play their main roles in innate immunity, in

the midst of a family of genes that operate at the interface of

innate and adaptive immunity, may portend related functions

for these paralogous genes.

The 1q21–23 region is a hotspot for translocation events

that have been defined in a number of human malignancies

(108–111). Some of these translocations affect members of

the FRC family, IRTA1/FcRH4 and FcgRIIB (89, 112). Given the

location of the mouse chromosome 1 and 3 junction within

the FRC and remarkable diversification of the extended Fc

receptor family, it is tempting to draw a parallel between the

breakpoint of paralogous MHC regions and involvement of

these regions in the chromosomal instability and translo-

cations recognized commonly in malignancy. Homology of

intergenic elements in these paralogous regions, such as

microsatellite repeats, retroelements, and other common re-

petitive sequences, potentially could provide a framework for

promiscuous recombination, which can act as a driving force

in natural evolutionary processes and malignant transform-

ation (113–115).

The identification of novel members of the extended FcR
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family on mouse chromosomes 1 and 3 helps to refine the

definition of mouse and human FRC synteny. The portion of

human chromosome 1q21–22 containing FcgRIa and FcRH1-

5 is located in a syntenic region of mouse chromosome 3

and is reversed with regard to its human genomic orientation.

Characterization of the moFcRHs indicates considerable diver-

gence relative to their human counterparts, particularly with

respect to the number, order, and chromosomal organization

of these genes as well as the location of the Spa/CD5L/Api6

gene within the FcRH locus. Despite inconsistent positioning

of these genes, the close linkage of Spa/CD5L/Api6 in addition

to the conserved genomic structure observed among

moFcRH1-3 (our unpublished data) indicates that these mouse

genes reside in a syntenic location and share a common an-

cestry with their human FRC relatives. The location of FcgRI

telomeric to moFcRH1-3 not only suggests a common origin

for this portion of the extended family, but, along with its

linkage to the FcRHs, reaffirms the accuracy of its positioning

on human chromosome 1q21–22. The location of CD1D, cen-

tromeric of the moFcRH genes, is consistent with its position

Fig. 1. Organization of the extended FRC gene family in humans and mice. The human 1q21–23 region is depicted along with its syntenic
regions located on mouse chromosomes 1 and 3. Approximate positions were determined from NCBI, Celera, Ensembl, Mouse Genome Informatics
(MGI) databases, and unpublished observations. Gene positions are approximations and are not to scale.
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in humans near the junction between the two FRC derived

regions.

The mouse chromosome 1 derived portion of the FRC lo-

cus is also in an opposite orientation relative to the syntenic

region in humans, but it has generally conserved positioning

of its homologous genes. The low affinity FcgR genes in this

region have been recognized only as single copies in mice

compared to their duplicate and diversified relatives in

humans. The recent recognition of a third gene proximal to

moFcgRII and moFcgRIII, moFcrl3, indicates another low affinity

receptor may exist in mice, and we note that this receptor has

greater identity to huFcgRIII (see ‘Phylogeny of the extended

Fc receptor gene family’).

A particularly well conserved feature of FRC genes in both

humans and mice is their possession of a split signal peptide

encoded by two exons, the first of which most commonly

contains both the 5ƒUTR and translation initiation start site

(ATG). The second half of the signal peptide is consistently

encoded by a 21 bp exon (97, 100, 116–119). This consti-

tutes an important distinction between the FRC genes and
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LRC genes, all of which have a 36bp second exon (120–

123). The extracellular Ig-like domains of all FRC family

members are encoded by single exons that follow the phase

1 splicing typical for Ig-like domains (9, 86). A notable

exception is the FcRX gene, which does not maintain the

21bp S2 exon, but rather its second exon encodes a partial

Ig-like domain that also follows a phase 1 splicing pattern

(92). Although the transmembrane and cytoplasmic regions

differ widely among FRC family members, the exonic or-

ganization among FcRH genes is largely conserved (reviewed

in 86). HuFcRH1-5 transmembrane regions are encoded by

single exons that are followed by five exons encoding the

cytoplasmic tails, the fifth of which includes the translation

termination site and the 3ƒUTR. HuFcRH6 differs from

huFcRH1-5 in that its cytoplasmic domain is encoded by

four rather than five exons (our unpublished data). High-

Fig. 2. Phylogenetic relationships of the extended Fc receptor gene family. The extracellular amino acids of each receptor were aligned using
ClustalX, and the tree topology was estimated using neighbor-joining where branch values represent percentage bootstrap support after 500 replicates
and values below 50% are not shown (47). The chromosome 19 encoded IgA-binding FcaR (CD89) was included in the analysis as a measure of
tree topology.
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lighting the diversity of the moFcRHs is the presence of a

seventh exon in one moFcRH2 isoform that encodes a type

B cysteine rich scavenger receptor domain. Notably, this is

the first identification of an FRC gene encoding a chimeric

molecule containing both Ig-like and cysteine rich scaven-

ger receptor elements. The moFcRH2 scavenger domain is

56% identical to the amino terminal cysteine rich domain

of the moSpa/CD5L/Api6 scavenger receptor). This struc-

tural feature is not found in any of the huFcRHs or any

currently characterized proteins in humans and mice. Other

unique features of the extended family are found in the

fifth exon of huFcRX and moFcRX, which encodes a proline

and leucine rich domain not seen among other FcR or FcRH

genes. This exon includes the translation termination site

and the beginning of the 3ƒUTR. The classical FcR genomic

structures have been described elsewhere (9, 10).
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Phylogeny of the extended Fc receptor family

The homology-based identification of multiple human FcR

homologs indicates that the regulatory networks involved in

modulating cellular function in response to FcR engagement

may be surprisingly complex. Their shared chromosomal

proximity, genomic structure, and Ig-like domains give cre-

dence to the conclusion that the FcR and FcRH gene families

are modern descendants of an ancient genetic lineage. The

conservation of key cytoplasmic elements involved in intra-

cellular signaling cascades further infers complex biological

functions, which may include the modulation of innate and

adaptive immune responses. The recent identification of

genes encoding additional glycoproteins, FcRH6, FcRX, and

FcRY, that share sequence similarity and chromosomal prox-

imity with the FcR and FcRH gene families indicates that this

is a highly dynamic region of the mammalian genome. While

FceRIa, FcRX, and FcRY represent members of the FRC gene

family that appear to maintain orthologous relationships in

man and mouse, both the FcR and FcRH families appear to

have undergone multiple rounds of gene duplication, exon

duplication, and recombination since the speciation of rodent

and primate lineages, thereby generating several paralogous

receptors (118, 119, 124, 125).

Phylogenetic reconstruction of the extended Fc receptor

family based on Ig-like domain amino acid sequences reliably

segregates all known syntenic relatives into distinct FcR and

FcRH families (Fig. 2). Included in this analysis is a novel

mouse receptor with significant sequence similarity to

huFcgRIII. This receptor, termed moFcrl3 (NCBI Accession:

NM_144559), shares a terminal node with huFcgRIII that is

segregated from the human and mouse FcgRII genes. Interest-

ingly, the node containing huFcgRIIA, huFcgRIIB, and

moFcgRII also includes moFcgRIII, thereby suggesting that

the mouse gene currently designated as FcgRIII may actually

represent an additional moFcgRII gene. Human FcRH6,

moFcRH6, ragp42, moFcRH1, and moFcRH2 segregate as

Fig. 3. Conserved extracellular domain architecture. A) Ig-like domains
identified in human and mouse members of the extended Fc receptor
family are color-coded based on similarity to huFcRH3 domains. B) Heat-
map depicting percentage similarities between individual huFcRH3 do-
mains and all other Ig-like domains in the extended Fc receptor family.
Sequence similarities were estimated from a Clustal generated all-against-
huFcRH3 amino sequence alignment and domains were clustered based
on their similarity measures (Spotfire Somerville, MA). Shaded cells rep-
resent the degree of similarity between the domain in that row and the
FcRH3 domain above that column.
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new members of the FcRH family, whereas the recently iden-

tified FcRX and FcRY relatives cluster with the classical FcRs.

While this analysis cleanly separates the FcR and FcRH gene

families into what may be considered distinct genetic lin-

eages, the interdigitating chromosomal arrangement of these

families indicates that the FcR and FcRH families may possess

more complex relationships, possibly including genetic re-

combination between loci. Further evidence suggesting that

the FcR and FcRH loci are actively involved in interlocus re-

combination comes from comparative analyses of individual

Ig-like domains. We have shown that all Ig-like domains in

the extended Fc receptor family can be grouped into five do-

main sub-types based on sequence similarity (85, 86)

(Fig. 3A). Because it possesses all five sub-types of FcR/FcRH

extracellular domain sequences, huFcRH3 was used in an all-

against-huFcRH3 comparison of individual Ig-like domains

to reaffirm the domain designations (Fig. 3B). Color-coding

the extracellular domains of the extended Fc receptor gene

family, based on sequence similarity to huFcRH3, depicts a

high degree of similarity in domain architecture and high-

lights at least two possible examples of interlocus recombi-

nation events. Notably, domain 3 of huFcRH3 (yellow) repre-

sents a subunit that is present in all huFcRH family members,

but is unique to huCD64 among the classical FcRs and con-

tributes to its high affinity binding capacity of monomeric

IgG (126–128) (see Fig. 3A). This type of Ig-like domain is

also present in both FcRX and FcRY, which appear more

closely related to the FcR family based on their chromosomal

location and the phylogenetic reconstruction. The degree of

genetic complexity emerging as a hallmark feature of the ex-

tended FcR gene family is reminiscent of the LRC-encoded

multigene families (35), wherein homologous Ig-like recep-

tors exhibit extensive extracellular sequence variation around

a common Ig-like structure (59, 129). The core Ig-like struc-

ture of LRC encoded receptors is more closely related to the

Ig-like domains of FcRs than any other known Ig domain

structure and uniquely combines features of both the C2-set

and I-set Ig domains (130). Identification of chicken Ig-like

receptors (CHIR) that combine features of both the FRC and

LRC suggests that the FRC and LRC genes may have belonged

to a single gene family as recently as 250 million years ago.

Avian homologs, like their mammalian counterparts, exist as

paired receptors that share extracellular ligand binding poten-

tial but have opposing activating and inhibitory signaling po-

tential. Penetration of these emergent properties into modern

avian and mammalian representatives of this ancient genetic

lineage attests to the importance of their biological function

in vertebrate immunity. In keeping with this conjecture, chro-
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mosomal aberrations involving both the classical FcR and the

FcRH gene families have been linked to autoimmunity and

malignant transformation. Recently, an epistatic model of in-

teraction between the LRC encoded KIRs and class I MHC

alleles has been associated with delayed progression to AIDS

in HIV-infected individuals (131).

The second domain of classical FcRs (color coded dark

blue) is the major region of Ig–Fc interaction, and this do-

main clusters with homologous domains from 20 members

of the extended Fc receptor family. Based on multiple se-

quence alignment of the domains designated as dark blue

domains in Fig. 3A, we have identified an Fc-binding consen-

sus sequence that distinguishes this domain from other do-

mains in the extended Fc receptor family (Fig. 4, black shad-

ing). Notably, this consensus sequence does not include

amino acid positions that have been shown to directly interact

with Ig–Fc. Perhaps this finding reflects conservation of core

residues that are essential for maintaining the structural re-

quirements of Ig–Fc binding, while allowing for variation in

the residues that confer ligand specificity (Fig. 4, yellow shad-

ing). The high degree of variability in the amino acid se-

quences of domains fitting the Ig-Fc binding consensus corre-

lates with the decreased intensity displayed for the D2 cluster

in the heatmap representation of domain similarity in Fig. 3B.

Correspondingly, while D2 of moFcRL3 possesses the Ig-Fc

binding consensus displayed in Fig. 4, the amino acid compo-

sition of this subunit is equally identical to Ig-like domain

subtypes D2–D4, and thus it does not consistently cluster

with other domains that match the Ig–Fc binding consensus

(Fig. 3B). Interestingly, the identification of human cytomeg-

alovirus encoded FcR homologs that bind Ig-Fc, despite their

lack of the structural residues described in Fig. 4, indicates an

unforeseen plasticity in the amino acid sequences that may

bestow Ig-binding capability (132).

Diverse signaling potential of FcR family members

Members of the extended FcR family have diverse signaling

capabilities based on their possession of tyrosine-based acti-

Fig. 4. Sequence similarity predicts Fc-binding potential for several
members of the extended Fc receptor family. Sequences of Ig-like do-
mains clustering with domain 2 (D2) of huFcgRIII and huFceR were
aligned using ClustalX. The original consensus sequence used to identify
the human FcR homologs is shown atop the alignment (85). Residues
shaded in black represent a consensus sequence that uniquely identifies
this cluster of domains and yellow highlights the positions of residues
that mediate Fc-binding for huFcgRIII (red letters) and huFceR (green
letters).
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vation motifs and/or inhibition motifs that are shared by

other activating and inhibitory pairs within the greater immu-

noreceptor family. The immunoreceptor tyrosine-based acti-

vation motifs (ITAM) contain two repeats of the consensus

sequence Y-X-X-L/I spaced by 6–8 amino acids (E/D)-X-X-

Y-X-X-(L/I)-X6-8-Y-X-X-(L/I), while the immunoreceptor

tyrosine-based inhibitory motifs (ITIM) feature a six amino

acid consensus sequence (I/V/L/S)-X-Y-X-X-(L/V/I) (63–

65, 67, 68). Following ligand binding by the activating re-

ceptor complexes, tyrosines in the ITAM are phosphorylated

by src family kinases, enabling them to recruit other signaling

elements in a signaling cascade that triggers cellular acti-

vation. In the case of ITIM bearing receptors, the phosphoryl-

ated tyrosines provide a docking site for phosphatases con-

taining SH-2 domains that can abrogate cellular activation via

signaling pathways that depend upon tyrosine phosphoryla-

tion (133, 134). The balance between activating and inhibi-

tory receptor pairs can thus modulate cellular responses to a

variety of stimuli.

The classical receptors FcgRI, FcRgIII (transmembrane

form), and FceRIa have short cytoplasmic tails and transduce

activation signals via their non-covalent interaction with the

single ITAM bearing FcRgc (79–82, 135, 136); additionally,

FcRgIII can also transduce signals via the CD3z chain, which

possesses three ITAMs (137, 138). The association of receptor

subunits is dependent on a single aspartic acid residue present

in the transmembrane regions of FcRgc, CD3z, FcRgIII, and

FceRIa. This charged residue is the key to the non-covalent

interaction of these Fc binding molecules with ITAM bearing

co-adapter subunits. The association of FcgRI with the FcRgc

subunit occurs via the former’s basically charged histidine

residue within the transmembrane region. Similar to FcRgIII

and FceRIa, the huFcRH1 transmembrane domain contains

an acidic residue (glutamic acid) that could afford interaction

with other transmembrane molecules. However, its pos-

session of ITAM-like motifs in its cytoplasmic region suggests

that huFcRH1 has autonomous signaling potential, and thus

it differs from FcR relatives with short cytoplasmic tails that

lack tyrosines. HuFcRH1 may thus be unique in the FcRH

family in its possession of both types of immunoreceptor

extracellular and adapter subunit characteristics.

In contrast with other classical Fc receptors, the receptors

encoded by the FcgRII genes do not require co-association

with adapter subunits to transduce intracellular signals. They

instead possess either cytoplasmic ITAM sequences (FcgRIIA

and FcgRIIC) or ITIM sequences (FcgRIIB) with correspond-

ing activating or inhibitory functional capacity. The auton-

omous signaling property of FcgRII is shared by the FcRHs
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that possess ITIMs, ITAMs, or both types of signaling motifs

in their cytoplasmic tails (Table 1). The ITIMs found in the

FcRH cytoplasmic tails maintain residues of the (I/V/L/S)-X-

Y-X-X-(L/V/I) consensus motif. Tyrosine motifs present in

some FcRH cytoplasmic domains share the previously defined

ITAM consensus (E/D)-X-X-Y-X-X-(L/I)-X6-8-Y-X-X-(L/I).

For example, huFcRH1, huFcRH3, and moFcRH1 generally

follow this defined motif. Other ITAM-like sequences are

found among the FcRH cytoplasmic domains that maintain

analogous positional conservation of tyrosine residues, but

differ slightly in amino acid character at the π3 position.

Although these sequences are highly reminiscent of ITAMs,

functional studies will be required to clarify their func-

tionality. Other tyrosine based motifs found in huFcRH1 and

huFcRH3, may constitute ‘hemi-ITAMs’, wherein the se-

quence (E/D)-X-X-Y-X-X-(A/V) is present but a tandem sec-

ond tyrosine-based sequence is not. A similar motif is noted

in PIR-B (49).

Clearly the FcRHs are likely to differ substantially in their

signaling capabilities relative to those of the FcR family mem-

bers. Conversely, a signaling role is unlikely in the case of

FcRX, since it does not possess a transmembrane region or

N-linked glycosylation sites. Rather, its acidic biochemical

characteristics are consistent with the likelihood that it func-

tions intracellularly, perhaps as a scaffolding component inter-

acting via its Ig-like domains. The evolutionary origins of the

tyrosine-based functional capacities of the FcRHs versus those

of its classical FcR relatives are not obvious. However, it is

clear that similar tyrosine-based motif complexity is shared

among FcRH family members. This may imply that the intra-

cellular signaling elements engaged by these receptors will be

shared among FcRHs, but may differ from those currently

defined for other tyrosine-based immunoreceptors. The pres-

ence of both ITIM and ITAM in the same cytoplasmic tail

adds complexity to their signaling potential. This signal trans-

duction potential coupled with Ig-binding capacity of some

FcRHs may involve new cellular signaling pathways.

Polymorphism of the Fc receptor family

The classical human receptors FcgRIIA and FcgRIIB are ex-

pressed in several distinct splice variant isoforms. In addition,

FcgRI, FcgRII (A, B and C) and FcRgIII (A, transmembrane;

and B, glycosylphosphatidylinositol (GPI)-anchored form)

each have naturally occurring allelic variants that reflect non-

synonymous single nucleotide polymorphisms (SNPs). The

SNPs in the second extracellular domain (D2) of FcgRIIA and

FcgRIIIA affect Fc binding affinity and specificity, while the
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non-synonymous transmembrane SNP in FcgRIIB alters recep-

tor signaling (R.P.K. unpublished results, 139). The short

cytoplasmic tails of both FcgRIA and FcgRIIIA modulate signal

transduction through non–covalent association with FcRgc

(140, 141), but the impact of the cytoplasmic sequence vari-

ants of FcgRIA and FcgRIIIA on the transduction of activation

signals has not been established (142). Both the FcRgc and

CD3z signaling partners of the FcRs appear to be invariant

(143, 144).

Not surprisingly, members of the FcRH family may also dis-

play both splice variant and allelic diversity, the full extent of

which has yet to be elucidated. Several splice variants have

been reported that modify the open reading frame. These

include two potentially secreted variants and a GPI anchored

form of IRTA2 (FcRH5) (89) and a truncated form of FcRH2

(91). Multiple splice variants, including a D2-deficient se-

quence of FcRH4, have been identified on a message level (our

unpublished results). Corresponding FcRH protein isoforms

Table 1. Activating and inhibitory tyrosine-based signaling motifs

Receptor ITAM-like ITIM Other tyrosines

huFcRH1 EFTYLNSPTPGQLQP I YENV SGDEVYSLAYYNQPEQ
DI YSRLRKANI TDVDYEDA

huFcRH2 EFTYSSPTPDMEELQPVYVNV VVYSQV
V I YSS V

huFcRH3 EPMYSNVNPGDSNPIYSQI VLYSEL EDDEENYENVPRV

huFcRH4 S L YVDV
L VYSE I
VVYSEV

huFcRH5 EPTYHNVPAWEELQPVYTNA VVYSEV
I I YSEV

huFcRH6 VVYSVV GEQCPLYANVHHQ

moFcRH1 EPLYENVNVVSGNEVYSLV VLQGSTY PKSPDS
QVS S G LY SKPR IN
N I AHMDYEDAM

moFcRH3 EPTYYNVPACIELQPVYSNE VIYTEV

huCD32A DGGYMTLNPRAPTDDDKNIYLTL EETNNDYETADGG

huCD32B ITYSLL ISALPGYPECREM

moCD32B ITYSLL PEEVGEYRQPSGL(B1)
PTSSSPYNPPDLE(B1)
EETEHDYQNHI

huFcRgc DGVYTGLSTRNQETYETL

moFcRgc DAVYTGLNTRSQETYETL

huCD3z NQLYNELNLGRREEYDVL
EGLYNELQKDKMAEAYSE I
DGLYQGLSTATKDTYDAL

moCD3z NQLYNELNLGRREEYDVL
EGVYNALQKDKMAEAYSE I
DGLYQGLSTATKDTYDAL

Tyrosines and key positional residues of the ITAM and ITIM consensus motifs are underlined.
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have not yet been characterized, but the existence of at least

some of these isoforms would parallel structural themes es-

tablished for the classical FcRs. The frequency of SNPs in the

FcRH coding regions is consistent with many other human

genes (145). FcRH3 has one non-synonymous SNP in the D1

extracellular domain (Asn28»Asp28) and a second non-syn-

onymous SNP in the cytoplasmic domain (Pro660»Leu660) that

modifies a candidate ITAM motif. The latter SNP occurs with

an allele frequency of 0.01 in Caucasians versus an allele fre-

quency of 0.16 in the African-American population. This dif-

ference, coupled with similar allele frequencies in the two

groups for the D1 SNP, is consistent with differential evol-

utionary pressure on the corresponding function. Unlike the

classical FcR, however, FcRH3-5 do not appear to have SNPs

that affect amino acid sequence in the second extracellular

domain (A.W.G. and R.P.K. unpublished results). FcRH4 has a

synonymous T�C transition at nucleotide 516 in D2 (Glu172-

»Glu172), but a second putative non-synonymous entry in
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GenBank (C536T which changes Ser179»Leu179) has not been

identified in the sequence analysis of FcRH4 in 48 African-

Americans and 50 Caucasians.

The mouse ortholog of FcRH3 may also exist in polymorphic

forms. Analysis of spleen mRNA from five inbred mouse strains

indicates the existence of two alleles, one that is expressed in

BALB/c, 129, CBA, and NZB mice and the other in C57BL/6

mice. The nucleotide discrepancies between the two forms re-

sult in peptide sequences that vary by the insertion or deletion

of one residue and by single residue differences at nine other

positions. These polymorphisms, located in the extracellular

portion of the moFcRH3 protein, affect three of the four most

amino-terminal Ig domains, namely D2, D3, and D4. One of

the polymorphic residues creates a site for N-linked glycosyl-

ation in one allele only, and five of the residue differences, in-

cluding the insertion, are situated among highly conserved

residues in the portion of the peptide that is within the D2-Fc

binding region of classical Fc receptors (dark blue domains Fig.

3A). The locations of these polymorphic residues suggest they

could affect ligand binding.
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Conclusion

The chromosome 1q21–23 region contains two related fam-

ilies of genes, the classical FcR (FcgRI, FcgRII, FcgRIII, and FceRI)

and the FcRH genes. The former have been shown to provide

a structural basis for the molecular interaction between im-

mune effector cells and the antibodies of the humoral im-

mune system. This interaction results in phagocytosis, in-

flammatory responses, and the regulation of antibody pro-

duction. The recent identification of the Fc receptor

homologs promises to significantly expand this biological

field of study. The diversity of structural features and signaling

potentials of FcR/FcRH family members indicate an unantici-

pated complexity for the ligand-binding and functional reper-

toire of this extensive immunoreceptor family. The wealth of

knowledge already accumulated for the classical FcRs will fuel

the future biological definition of these new family members

and broaden our understanding of the functional roles for

this diverse family of molecules in host defense.
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